12 research outputs found

    A Role for Extracellular Na+ in the Channel Gating of Native and Recombinant Kainate Receptors

    Get PDF
    8 páginas, 7 figuras.Ionotropic glutamate receptors of the kainate and AMPA subtypes share a number of structural features, both topographical and in terms of stoichiometry. In addition, AMPA and kainate receptors share similar pharmacological and biophysical properties in that they are activated by common agonists and display rapid activation and desensitization characteristics. However, we show here that in contrast to AMPA receptor-mediated responses (native or recombinant GluR3 receptor), the response of native and recombinant (GluR6) kainate receptors to glutamate was drastically reduced in the absence of extracellular Na+ (i.e., when replaced by Cs+). Removal of Na+ increases the rate of desensitization, indicating that external Na+ modulates channel gating. Whereas the size of the substituting cation is important in mimicking the action of Na+ (Li+>K+>Cs+), modulation was voltage independent. These results indicate the existence of different gating mechanisms for AMPA and kainate receptors. By using chimeric AMPA-kainate receptors derived from GluR3 and GluR6, we have identified a key residue in the S2 segment of GluR6 (M770) that is largely responsible for the sensitivity of the receptor to external Na+. Thus, these results show the existence of a specific kainate receptor gating mechanism that requires external Na+ to be operative.This work was supported by grants to J.L. from the Dirección General de Ensen anza Superior e Investigación Cientifica (PM99-0106) and the European Union (QLG3-CT2001-00929) and to Y.S.-B. from The Israel Science Foundation (496/00-2), the Israeli Ministry of Science, and the Spanish Ministry of Foreign Affairs in the form of an Israeli–Spanish Scientific Cooperation grant. A.V.P. is a postdoctoral fellow of the Community of Madrid.Peer reviewe

    Block of Kainate Receptor Desensitization Uncovers a Key Trafficking Checkpoint

    Get PDF
    10 páginas, 7 figuras.A prominent feature of ionotropic glutamate receptors from the AMPA and kainate subtypes is their profound desensitization in response to glutamate—a process thought to protect the neuron from overexcitation. In AMPA receptors, it is well established that desensitization results from rearrangements of the interface formed between agonist-binding domains of adjacent subunits; however, it is unclear how this mechanism applies to kainate receptors. Here we show that stabilization of the binding domain dimer by the generation of intermolecular disulfide bonds apparently blocked desensitization of the kainate receptor GluR6. This result establishes a common desensitization mechanism in both AMPA and kainate receptors. Surprisingly, however, surface expression of these nondesensitizing mutants was drastically reduced and did not depend on channel activity. Therefore, in addition to its role at the synapse, we now propose an intracellular role for desensitization in controlling maturation and trafficking of glutamate receptors.This work was supported by grants to Y.S.-B. from the Israel Science Foundation (grant 561/03) and the European Commission (EUSynapse project; contract LSHM-CT-2005-019055) and to J.L. by the Spanish Ministry of Education and Science (grant BFU2006- 07138). A.P. is a recipient of the David Kline prize of excellence by the Canadian Friends of the Hebrew University. S.S. is an I3P Program CSIC Research Fellow.Peer reviewe

    Molecular Mechanism of AMPA Receptor Noncompetitive Antagonism

    Get PDF
    10 páginas, 6 figuras.AMPA-type glutamate receptors are specifically inhibited by the noncompetitive antagonists GYKI-53655 and CP-465,022, which act through sites and mechanisms that are not understood. Using receptor mutagenesis, we found that these antagonists bind at the interface between the S1 and S2 glutamate binding core and channel transmembrane domains, specifically interacting with S1-M1 and S2-M4 linkers, thereby disrupting the transduction of agonist binding into channel opening. We also found that the antagonists' affinity is higher for agonist-unbound receptors than for activated nondesensitized receptors, further depending on the level of S1 and S2 domain closure. These results provide evidence for substantial conformational changes in the S1-M1 and S2-M4 linkers following agonist binding and channel opening, offering a conceptual frame to account for noncompetitive antagonism of AMPA receptors.This work was supported by grants from the Israel Science Foundation (Y.S.-B.), the Israeli Ministry of Health (Y.S.-B.), the Spanish Ministry of Education and Science (J.L.), and by an Israeli-Spanish Scientific Cooperation grant from the Israeli Ministry of Science and the Spanish Ministry of Foreign Affairs (Y.S.-B. and J.L.). V.B. is a recipient of a scholarship from the Bernard Katz Minerva Center for Cell Biophysics.Peer reviewe

    Auxiliary subunits of the CKAMP family differentially modulate AMPA receptor properties

    No full text
    Abstract AMPA receptor (AMPAR) function is modulated by auxiliary subunits. Here, we report on three AMPAR interacting proteins-namely CKAMP39, CKAMP52 and CKAMP59-that, together with the previously characterized CKAMP44, constitute a novel family of auxiliary subunits distinct from other families of AMPAR interacting proteins. The new members of the CKAMP family display distinct regional and developmental expression profiles in the mouse brain. Notably, despite their structural similarities they exert diverse modulation on AMPAR gating by influencing deactivation, desensitization and recovery from desensitization, as well as glutamate and cyclothiazide potency to AMPARs. This study indicates that AMPAR function is very precisely controlled by the cell-type specific expression of the CKAMP family members

    SynDIG4/Prrt1 Is Required for Excitatory Synapse Development and Plasticity Underlying Cognitive Function

    No full text
    Summary: Altering AMPA receptor (AMPAR) content at synapses is a key mechanism underlying the regulation of synaptic strength during learning and memory. Previous work demonstrated that SynDIG1 (synapse differentiation-induced gene 1) encodes a transmembrane AMPAR-associated protein that regulates excitatory synapse strength and number. Here we show that the related protein SynDIG4 (also known as Prrt1) modifies AMPAR gating properties in a subunit-dependent manner. Young SynDIG4 knockout (KO) mice have weaker excitatory synapses, as evaluated by immunocytochemistry and electrophysiology. Adult SynDIG4 KO mice show complete loss of tetanus-induced long-term potentiation (LTP), while mEPSC amplitude is reduced by only 25%. Furthermore, SynDIG4 KO mice exhibit deficits in two independent cognitive assays. Given that SynDIG4 colocalizes with the AMPAR subunit GluA1 at non-synaptic sites, we propose that SynDIG4 maintains a pool of extrasynaptic AMPARs necessary for synapse development and function underlying higher-order cognitive plasticity. : Matt et al. show that mice lacking the AMPAR-associated protein SynDIG4/Prrt1 display deficits in synaptic plasticity and cognition. SynDIG4 modifies AMPAR biophysical properties in heterologous cells, but synaptic AMPAR kinetics are unchanged, suggesting that SynDIG4 establishes a pool of extrasynaptic AMPARs necessary for higher-order cognitive plasticity. Keywords: Prrt1, NG5, SynDIG4, SynDIG family, extrasynaptic AMPARs, auxiliary factor, hippocampus, excitatory synapse, LT
    corecore